Redox-Dependent Mechanisms in Coronary Collateral Growth: The “Redox Window” Hypothesis

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Redox-dependent coronary metabolic dilation.

We have observed that hydrogen peroxide (H2O2), the dismutated product of superoxide, is a coronary metabolic dilator and couples myocardial oxygen consumption to coronary blood flow. Because the chemical activity of H2O2 favors its role as an oxidant, and thiol groups are susceptible to oxidation, we hypothesized that coronary metabolic dilation occurs via a redox mechanism involving thiol oxi...

متن کامل

Redox-sensitive Akt and Src regulate coronary collateral growth in metabolic syndrome.

We have recently shown that the inability of repetitive ischemia (RI) to activate p38 MAPK (p38) and Akt in metabolic syndrome [JCR:LA-cp (JCR)] rats was associated with impaired coronary collateral growth (CCG). Furthermore, Akt and p38 activation correlated with optimal O(2)(-). levels and were altered in JCR rats, and redox-sensitive p38 activation was required for CCG. Here, we determined w...

متن کامل

Redox Mechanisms in Blood Vessels

Reactive oxygen species have been implicated in the pathogenesis of virtually every stage of vascular lesion formation, hypertension, and other vascular diseases. We are currently gaining insight into important sources of reactive oxygen species in the vessel wall, including the NADPH oxidases, xanthine oxidase, uncoupled nitric oxide synthase, and mitochondrial sources. Although various reacti...

متن کامل

The Direct Electrochemical Investigation of Redox Enzymes

Even though the use of enzymes as useful analytical reagents when immobilized onto a transducer such as an electrochemical device has been reported in the literature for nearly two decades, the direct, i.e. unmediated electrochemistry of enzymes is, nevertheless, a rather recent development. Efforts will be made to introduce the fundamental basis for protein-surface interactions with emphas...

متن کامل

Redox-dependent transcriptional regulation.

Reactive oxygen species contribute to the pathogenesis of a number of disparate disorders including tissue inflammation, heart failure, hypertension, and atherosclerosis. In response to oxidative stress, cells activate expression of a number of genes, including those required for the detoxification of reactive molecules as well as for the repair and maintenance of cellular homeostasis. In many ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Antioxidants & Redox Signaling

سال: 2009

ISSN: 1523-0864,1557-7716

DOI: 10.1089/ars.2009.2476